Regularity Properties of the Zakharov System on the Half Line

نویسندگان

  • M. B. ERDOĞAN
  • N. TZIRAKIS
  • Nikolaos Tzirakis
چکیده

In this paper we study the local and global regularity properties of the Zakharov system on the half line with rough initial data. These properties include local and global wellposedness results, local and global smoothing results and the behavior of higher order Sobolev norms of the solutions. Smoothing means that the nonlinear part of the solution on the half line is smoother than the initial data. The gain in regularity coincides with the gain that was observed for the periodic Zakharov [13] and the Zakharov on the real line. Uniqueness is proved in the class of smooth solutions. When the boundary value of the Schrödinger part of the solution is zero, uniqueness can be extended to the full range of local solutions. Under the same assumptions on the initial data we also prove global-in-time existence and uniqueness of energy solutions. For more regular data we prove that all higher Sobolev norms grow at most polynomially-in-time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Bounds on Zakharov System Evolutions

Spatial regularity properties of certain global-in-time solutions of the Zakharov system are established. In particular, the evolving solution u(t) is shown to satisfy an estimate ‖u(t)‖ Hs ≤ C|t|, where H is the standard spatial Sobolev norm. The proof is an adaptation of earlier work on the nonlinear Schrödinger equation which reduces matters to bilinear estimates.

متن کامل

Low Regularity Global Well-posedness for the Zakharov and Klein-gordon-schrödinger Systems

We prove low-regularity global well-posedness for the 1d Zakharov system and 3d Klein-Gordon-Schrödinger system, which are systems in two variables u : Rx × Rt → C and n : Rx × Rt → R. The Zakharov system is known to be locally well-posed in (u, n) ∈ L2×H−1/2 and the Klein-Gordon-Schrödinger system is known to be locally well-posed in (u, n) ∈ L × L. Here, we show that the Zakharov and Klein-Go...

متن کامل

Strong Topological Regularity and Weak Regularity of Banach Algebras

In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...

متن کامل

Regularity Properties of the Cubic Nonlinear Schrödinger Equation on the Half Line

In this paper we study the local and global regularity properties of the cubic nonlinear Schrödinger equation (NLS) on the half line with rough initial data. These properties include local and global wellposedness results, local and global smoothing results and the behavior of higher order Sobolev norms of the solutions. In particular, we prove that the nonlinear part of the cubic NLS on the ha...

متن کامل

On the topological centers of module actions

In this paper, we  study the Arens regularity properties of module actions. We investigate some properties of topological centers of module actions ${Z}^ell_{B^{**}}(A^{**})$ and  ${Z}^ell_{A^{**}}(B^{**})$ with some conclusions in group algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016